《欢迎来到“成为2024年的数据科学家:Python机器学习”》是一门全面且适合初学者的课程,旨在快速引领你进入数据科学的世界。这门课程不仅仅是关于理论的学习,更是关于在真实世界中体验数据科学,由类似高级数据科学家的专业人士指导。课程中的每个环节都经过精心设计,以反映专业人士在该领域面临的日常挑战和场景。你将发现自己深入研究机器学习的核心方面,探索Python在数据分析中的实际应用,并揭开预测建模的奥秘。我们的方法独特之处在于,它将详细的视频教程与指导性的项目工作相结合,确保你学到的每个概念都通过实际应用得以强化。
随着你在课程中的进步,你将建立起Python编程的坚实基础,这对于任何渴望成为数据科学家的人来说都是必不可少的。我们深入探讨数据处理和可视化,教你如何将原始数据转化为富有洞察力和可操作性的信息。课程还涵盖了诸如统计分析、机器学习算法和模型评估等关键主题,为你提供了一个全面的技能组合。
这门课程的独特之处在于它强调真实世界的应用。你将参与模拟实际数据科学任务的动手项目工作。这种基于项目的学习方法不仅增强了你对主题的理解,还为你未来从事数据科学工作做好了准备。
在这10小时的学习之旅结束时,你不仅将学到数据科学和机器学习的基础知识,还将获得在实际情况下应用这些技能的信心。这门课程是你成为熟练数据科学家的第一步,它将为你在当今技术驱动的世界中备受追捧的知识和技能提供装备。
现在就加入“成为数据科学家:10小时内学会Python机器学习”的课程,踏上一场学习冒险,让你走上成为2024年及以后成功数据科学家之路的征程!
MP4 |视频:h264,1920×1080 |音频:AAC,44.1 KHz
语言:英语|大小:3.71 GB |时长:10小时7分钟
Practical Data Science Skills, Python, Real-World Machine Learning, Predictive Modeling, Project-Based Learning
What you’ll learn
Define the roles of Data Scientist
Model and interpret a complete machine learning project on python
Be able to answer most-asked Data Scientist interview questions
Explain the logic and all the fundamentals about Machine Learning algorithms
Requirements
No Machine Learning experience needed
High school level algebra
Very basic understanding about some programming terms (what is a ‘for loop’, what is ‘if conditions’ etc.)
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Course Structure
Section 2: What is Data Science, Machine Learning and Data Science Project Process ?
Lecture 3 Let’s Begin!
Lecture 4 All about Machine Learning.Let’s make first Machine Learning model without code!
Lecture 5 Data Science Project Process
Section 3: Environment Setup
Lecture 6 Anaconda Installation – Windows
Lecture 7 Anaconda Installation – MacOS
Section 4: Toolkit Intro: Statistics and python pandas, numpy, matplotlib and seaborn Recap
Lecture 8 Basic Statistics Intro
Lecture 9 pandas Intro
Lecture 10 numpy Intro
Lecture 11 matplotlib and seaborn Intro
Section 5: Data Preprocessing with Hands-on Python
Lecture 12 First Glance to Our Dataset
Lecture 13 Reading Data into Python
Lecture 14 Detecting Data Leak and Eliminate the Leakage
Lecture 15 Null Handling
Lecture 16 Encoding
Lecture 17 Feature Engineering on Our Geoghraphical Data
Section 6: Machine Learning Classification Algorithms – All the Logic Behind Them
Lecture 18 Logistic Regression Logic
Lecture 19 Logistic Regression Key Takeaways
Lecture 20 kNN Classifier Logic and Key Takeaways
Lecture 21 Decision Tree Classifier Logic
Lecture 22 Logistic Regression, kNN and Decision Tree Algorithms Wrap-up
Lecture 23 There Are Some Inexpensive Lunches in Machine Learning
Lecture 24 Random Forest Classifier Logic – Bagging Algorithm
Lecture 25 LightGBM Logic – Boosting Algorithm
Lecture 26 XGBoost Logic
Section 7: General Modelling Concepts
Lecture 27 Train Test Split and Overfit-Underfit
Lecture 28 More on Overfit-Underfit Concept
Section 8: Classification Model Evaluation Metrics
Lecture 29 Classification Model Evaluation Metrics
Section 9: Logistic Regression Classifier and kNN Classifier – Hands-on in Python
Lecture 30 Data Recap, Separation and Train Test Split
Lecture 31 Outlier Elimination
Lecture 32 Take a Look at the Test Set Considering Outliers
Lecture 33 Feature Scaling
Lecture 34 Update the Train Labels After Outlier Elimination
Lecture 35 Logistic Regression in Python
Lecture 36 kNN Classifier in Python
Section 10: Decision Tree Classifier and Random Forest Classifier – Hands-on in Python
Lecture 37 Decision Tree Classifier in Python
Lecture 38 Random Forest Classifier in Python
Section 11: LightGBM Classifier and XGBoost Classifier – Hands-on in Python
Lecture 39 LightGBM Classifier in Python
Lecture 40 XGBoost Classifier in Python
Section 12: Classification Model Selection, Feature Importance and Final Delivery
Lecture 41 Classification Model Selection
Lecture 42 Feature Importance Concept
Lecture 43 LightGBM Classifier Feature Importance
Lecture 44 LightGBM Classifier Re-train with Top Features
Lecture 45 Final Prediction for Joined Customers
Section 13: Multi-Class Classification – Hands-on in Python
Lecture 46 MultiClass Classification Explanation
Lecture 47 MultiClass Classification in Python
Section 14: Machine Learning Regression Models – Algorithms and Evaluation
Lecture 48 Regression Introduction
Lecture 49 Linear Regression Logic
Lecture 50 kNN, Decision Tree, Random Forest, LGBM and XGBoost Regressors’ Logic
Lecture 51 Regression Model Evaluation Metrics
Section 15: Regression Models in Python – Hands-on Modelling
Lecture 52 Linear Regression in Python
Lecture 53 LightGBM Regressor in Python
Section 16: Unsupervised Learning – Clustering Logic and Python Implementation
Lecture 54 Unsupervised Learning Logic and Use Cases
Lecture 55 K Means Clustering Logic
Lecture 56 Evaluation of Clustering
Lecture 57 Do the Scaling Before KMeans
Lecture 58 KMeans Clustering in Python
Section 17: You Made It !
Lecture 59 Congratz!
People who are curious about Machine Learning,People who have less than 10 hours to learn about Machine Learning
1、登录后,打赏30元成为VIP会员,全站资源免费获取!
2、资源默认为百度网盘链接,请用浏览器打开输入提取码不要有多余空格,如无法获取 请联系微信 yunqiaonet 补发。
3、分卷压缩包资源 需全部下载后解压第一个压缩包即可,下载过程不要强制中断 建议用winrar解压或360解压缩软件解压!
4、云桥网络平台所发布资源仅供用户自学自用,用户需以学习为目的,按需下载,严禁批量采集搬运共享资源等行为,望知悉!!!
5、云桥网络-CG数字艺术学习与资源分享平台,感谢您的关注与支持!
评论(0)