本课程将帮助您掌握Python数据科学和统计建模的基础知识到高级应用。无论您是初学者还是希望提升技能,本课程都提供了一个结构化的学习路径,通过动手项目和案例研究,让您获得实践经验。Python Mastery For Data, Statistics & Statistical Modeling
在本课程中,您将学习如何扎实掌握数据科学和统计领域的Python编程,使用Python进行数据操作,探索性数据分析技术,创建数据可视化,以及应用统计建模技术,了解数据分析和机器学习中的实际应用。
不需要先验知识或经验,本课程将从绝对基础开始解释,让您轻松上手。课程内容涵盖了Python语法和数据结构的有效操作,使用Pandas和Numpy进行数据探索,以及使用Matplotlib、Seaborn和Bokeh创建引人注目的数据可视化。此外,您还将深入研究Python中的Scikit-Learn机器学习,了解概率和统计的关键概念,并在现实场景中应用统计建模技术。
通过本课程,您将能够使用Python算法构建自定义统计模型,执行假设检验和相关性分析,实施线性和多元回归模型,并参与实践项目和真实世界案例研究。
总之,本课程将为您提供使用Python进行数据分析、可视化和建模所需的知识和实践经验。无论您的目标是开启职业生涯、提升当前角色,还是探索数据世界,本课程都能够为您提供所需的基础。
课程目录:
Section 1: Python for Data Science and Data Analysis
Lecture 1 Link to the Python codes for the projects and the data
Lecture 2 Introduction: About the Tutor and AI Sciences
Lecture 3 Introduction: Introduction To Instructor
Lecture 4 Introduction: Focus of the Course-Part 1
Lecture 5 Introduction: Focus of the Course- Part 2
Lecture 6 Basics of Programming: Understanding the Algorithm
Lecture 7 Basics of Programming: FlowCharts and Pseudocodes
Lecture 8 Basics of Programming: Example of Algorithms- Making Tea Problem
Lecture 9 Basics of Programming: Example of Algorithms-Searching Minimun
Lecture 10 Basics of Programming: Example of Algorithms-Searching Minimun Quiz
Lecture 11 Basics of Programming: Example of Algorithms-Sorting Problem
Lecture 12 Basics of Programming: Example of Algorithms-Searching Minimun Solution
Lecture 13 Basics of Programming: Sorting Problem in Python
Lecture 14 Why Python and Jupyter Notebook: Why Python
Lecture 15 Why Python and Jupyter Notebook: Why Jupyter Notebooks
Lecture 16 Installation of Anaconda and IPython Shell: Installing Python and Jupyter Anaconda
Lecture 17 Installation of Anaconda and IPython Shell: Your First Python Code- Hello World
Lecture 18 Installation of Anaconda and IPython Shell: Coding in IPython Shell
Lecture 19 Variable and Operator: Variables
Lecture 20 Variable and Operator: Operators
Lecture 21 Variable and Operator: Variable Name Quiz
Lecture 22 Variable and Operator: Bool Data Type in Python
Lecture 23 Variable and Operator: Comparison in Python
Lecture 24 Variable and Operator: Combining Comparisons in Python
Lecture 25 Variable and Operator: Combining Comparisons Quiz
Lecture 26 Python Useful function: Python Function- Round
Lecture 27 Python Useful function: Python Function- Round Quiz
Lecture 28 Python Useful function: Python Function- Round Solution
Lecture 29 Python Useful function: Python Function- Divmod
Lecture 30 Python Useful function: Python Function- Is instance and PowFunctions
Lecture 31 Python Useful function: Python Function- Input
Lecture 32 Control Flow in Python: If Python Condition
Lecture 33 Control Flow in Python: if Elif Else Python Conditions
Lecture 34 Control Flow in Python: if Elif Else Python Conditions Quiz
Lecture 35 Control Flow in Python: if Elif Else Python Conditions Solution
Lecture 36 Control Flow in Python: More on if Elif Else Python Conditions
Lecture 37 Control Flow in Python: More on if Elif Else Python Conditions Quiz
Lecture 38 Control Flow in Python: More on if Elif Else Python Conditions Solution
Lecture 39 Control Flow in Python: Indentations
Lecture 40 Control Flow in Python: Indentations Quiz
Lecture 41 Control Flow in Python: Indentations Solution
Lecture 42 Control Flow in Python: Comments and Problem Solving Practice With If
Lecture 43 Control Flow in Python: While Loop
Lecture 44 Control Flow in Python: While Loop break Continue
Lecture 45 Control Flow in Python: While Loop break Continue Quiz
Lecture 46 Control Flow in Python: While Loop break Continue Solution
Lecture 47 Control Flow in Python: For Loop
Lecture 48 Control Flow in Python: For Loop Quiz
Lecture 49 Control Flow in Python: For Loop Solution
Lecture 50 Control Flow in Python: Else In For Loop
Lecture 51 Control Flow in Python: Loops Practice-Sorting Problem
Lecture 52 Function and Module in Python: Functions in Python
Lecture 53 Function and Module in Python: DocString
Lecture 54 Function and Module in Python: Input Arguments
Lecture 55 Function and Module in Python: Multiple Input Arguments
Lecture 56 Function and Module in Python: Multiple Input Arguments Quiz
Lecture 57 Function and Module in Python: Multiple Input Arguments Solution
Lecture 58 Function and Module in Python: Ordering Multiple Input Arguments
Lecture 59 Function and Module in Python: Output Arguments and Return Statement
Lecture 60 Function and Module in Python: Function Practice-Output Arguments and Return Statement
Lecture 61 Function and Module in Python: Variable Number of Input Arguments
Lecture 62 Function and Module in Python: Variable Number of Input Arguments Quiz
Lecture 63 Function and Module in Python: Variable Number of Input Arguments Solution
Lecture 64 Function and Module in Python: Variable Number of Input Arguments as Dictionary
Lecture 65 Function and Module in Python: Variable Number of Input Arguments as Dictionary Quiz
Lecture 66 Function and Module in Python: Variable Number of Input Arguments as Dictionary Solution
Lecture 67 Function and Module in Python: Default Values in Python
Lecture 68 Function and Module in Python: Modules in Python
Lecture 69 Function and Module in Python: Making Modules in Python
Lecture 70 Function and Module in Python: Function Practice-Sorting List in Python
Lecture 71 String in Python: Strings
Lecture 72 String in Python: Multi Line Strings
Lecture 73 String in Python: Indexing Strings
Lecture 74 String in Python: Indexing Strings Quiz
Lecture 75 String in Python: Indexing Strings Solution
Lecture 76 String in Python: String Methods
Lecture 77 String in Python: String Methods Quiz
Lecture 78 String in Python: String Methods Solution
Lecture 79 String in Python: String Escape Sequences
Lecture 80 String in Python: String Escape Sequences Quiz
Lecture 81 String in Python: String Escape Sequences Solution
Lecture 82 Data Structure: Introduction to Data Structure
Lecture 83 Data Structure: Defining and Indexing
Lecture 84 Data Structure: Insertion and Deletion
Lecture 85 Data Structure: Insertion and Deletion Quiz
Lecture 86 Data Structure: Insertion and Deletion Solution
Lecture 87 Data Structure: Python Practice-Insertion and Deletion
Lecture 88 Data Structure: Python Practice-Insertion and Deletion Quiz
Lecture 89 Data Structure: Python Practice-Insertion and Deletion Solution
Lecture 90 Data Structure: Deep Copy or Reference Slicing
Lecture 91 Data Structure: Deep Copy or Reference Slicing Quiz
Lecture 92 Data Structure: Deep Copy or Reference Slicing Solution
Lecture 93 Data Structure: Exploring Methods Using TAB Completion
Lecture 94 Data Structure: Data Structure Abstract Ways
Lecture 95 Data Structure: Data Structure Practice
Lecture 96 Data Structure: Data Structure Practice Quiz
Lecture 97 Data Structure: Data Structure Practice Solution
Section 2: Mastering Probability & Statistic Python (Theory & Projects)
Lecture 98 Link to the Python codes for the projects and the data
Lecture 99 Introduction: Introduction to Instructor and AISciences
Lecture 100 Introduction: Introduction To Instructor
Lecture 101 Introduction: Focus of the Course
Lecture 102 Probability vs Statistics: Probability vs Statistics
Lecture 103 Sets: Definition of Set
Lecture 104 Sets: Cardinality of a Set
Lecture 105 Sets: Subsets PowerSet UniversalSet
Lecture 106 Sets: Python Practice Subsets
Lecture 107 Sets: PowerSets Solution
Lecture 108 Sets: Operations
Lecture 109 Sets: Operations Exercise 01
Lecture 110 Sets: Operations Solution 01
Lecture 111 Sets: Operations Exercise 02
Lecture 112 Sets: Operations Solution 02
Lecture 113 Sets: Operations Exercise 03
Lecture 114 Sets: Operations Solution 03
Lecture 115 Sets: Python Practice Operations
Lecture 116 Sets: VennDiagrams Operations
Lecture 117 Sets: Homework
Lecture 118 Experiment: Random Experiment
Lecture 119 Experiment: Outcome and Sample Space
Lecture 120 Experiment: Outcome and Sample Space Exercise 01
Lecture 121 Experiment: Outcome and Sample Space Solution 01
Lecture 122 Experiment: Event
Lecture 123 Experiment: Event Exercise 01
Lecture 124 Experiment: Event Solution 01
Lecture 125 Experiment: Event Exercise 02
Lecture 126 Experiment: Event Solution 02
Lecture 127 Experiment: Recap and Homework
Lecture 128 Probability Model: Probability Model
Lecture 129 Probability Model: Probability Axioms
Lecture 130 Probability Model: Probability Axioms Derivations
Lecture 131 Probability Model: Probability Axioms Derivations Exercise 01
Lecture 132 Probability Model: Probability Axioms Derivations Solution 01
Lecture 133 Probability Model: Probablility Models Example
Lecture 134 Probability Model: Probablility Models More Examples
Lecture 135 Probability Model: Probablility Models Continous
Lecture 136 Probability Model: Conditional Probability
Lecture 137 Probability Model: Conditional Probability Example
Lecture 138 Probability Model: Conditional Probability Formula
Lecture 139 Probability Model: Conditional Probability in Machine Learning
Lecture 140 Probability Model: Conditional Probability Total Probability Theorem
Lecture 141 Probability Model: Probablility Models Independence
Lecture 142 Probability Model: Probablility Models Conditional Independence
Lecture 143 Probability Model: Probablility Models Conditional Independence Exercise 01
Lecture 144 Probability Model: Probablility Models Conditional Independence Solution 01
Lecture 145 Probability Model: Probablility Models BayesRule
Lecture 146 Probability Model: Probablility Models towards Random Variables
Lecture 147 Probability Model: HomeWork
Lecture 148 Random Variables: Introduction
Lecture 149 Random Variables: Random Variables Examples
Lecture 150 Random Variables: Random Variables Examples Exercise 01
Lecture 151 Random Variables: Random Variables Examples Solution 01
Lecture 152 Random Variables: Bernulli Random Variables
Lecture 153 Random Variables: Bernulli Trail Python Practice
Lecture 154 Random Variables: Bernulli Trail Python Practice Exercise 01
Lecture 155 Random Variables: Bernulli Trail Python Practice Solution 01
Lecture 156 Random Variables: Geometric Random Variable
Lecture 157 Random Variables: Geometric Random Variable Normalization Proof Optional
Lecture 158 Random Variables: Geometric Random Variable Python Practice
Lecture 159 Random Variables: Binomial Random Variables
Lecture 160 Random Variables: Binomial Python Practice
Lecture 161 Random Variables: Random Variables in Real DataSets
Lecture 162 Random Variables: Random Variables in Real DataSets Exercise 01
Lecture 163 Random Variables: Random Variables in Real DataSets Solution 01
Lecture 164 Random Variables: Homework
Lecture 165 Continous Random Variables: Zero Probability to Individual Values
Lecture 166 Continous Random Variables: Zero Probability to Individual Values Exercise 01
Lecture 167 Continous Random Variables: Zero Probability to Individual Values Solution 01
Lecture 168 Continous Random Variables: Probability Density Functions
Lecture 169 Continous Random Variables: Probability Density Functions Exercise 01
Lecture 170 Continous Random Variables: Probability Density Functions Solution 01
Lecture 171 Continous Random Variables: Uniform Distribution
Lecture 172 Continous Random Variables: Uniform Distribution Exercise 01
Lecture 173 Continous Random Variables: Uniform Distribution Solution 01
Lecture 174 Continous Random Variables: Uniform Distribution Python
Lecture 175 Continous Random Variables: Exponential
Lecture 176 Continous Random Variables: Exponential Exercise 01
Lecture 177 Continous Random Variables: Exponential Solution 01
Lecture 178 Continous Random Variables: Exponential Python
Lecture 179 Continous Random Variables: Gaussian Random Variables
Lecture 180 Continous Random Variables: Gaussian Random Variables Exercise 01
Lecture 181 Continous Random Variables: Gaussian Random Variables Solution 01
Lecture 182 Continous Random Variables: Gaussian Python
Lecture 183 Continous Random Variables: Transformation of Random Variables
Lecture 184 Continous Random Variables: Homework
Lecture 185 Expectations: Definition
Lecture 186 Expectations: Sample Mean
Lecture 187 Expectations: Law of Large Numbers
Lecture 188 Expectations: Law of Large Numbers Famous Distributions
Lecture 189 Expectations: Law of Large Numbers Famous Distributions Python
Lecture 190 Expectations: Variance
Lecture 191 Expectations: Homework
Lecture 192 Project Bayes Classifier: Project Bayes Classifier From Scratch
Lecture 193 Multiple Random Variables: Joint Distributions
Lecture 194 Multiple Random Variables: Joint Distributions Exercise 01
Lecture 195 Multiple Random Variables: Joint Distributions Solution 01
Lecture 196 Multiple Random Variables: Joint Distributions Exercise 02
Lecture 197 Multiple Random Variables: Joint Distributions Solution 02
Lecture 198 Multiple Random Variables: Joint Distributions Exercise 03
Lecture 199 Multiple Random Variables: Joint Distributions Solution 03
Lecture 200 Multiple Random Variables: Multivariate Gaussian
Lecture 201 Multiple Random Variables: Conditioning Independence
Lecture 202 Multiple Random Variables: Classification
Lecture 203 Multiple Random Variables: Naive Bayes Classification
Lecture 204 Multiple Random Variables: Regression
Lecture 205 Multiple Random Variables: Curse of Dimensionality
Lecture 206 Multiple Random Variables: Homework
Lecture 207 Optional Estimation: Parametric Distributions
Lecture 208 Optional Estimation: MLE
Lecture 209 Optional Estimation: LogLiklihood
Lecture 210 Optional Estimation: MAP
Lecture 211 Optional Estimation: Logistic Regression
Lecture 212 Optional Estimation: Ridge Regression
Lecture 213 Optional Estimation: DNN
Lecture 214 Mathematical Derivations for Math Lovers: Permutations
Lecture 215 Mathematical Derivations for Math Lovers: Combinations
Lecture 216 Mathematical Derivations for Math Lovers: Binomial Random Variable
Lecture 217 Mathematical Derivations for Math Lovers: Logistic Regression Formulation
Lecture 218 Mathematical Derivations for Math Lovers: Logistic Regression Derivation
Lecture 219 THANK YOU
Section 3: Statistics: Statistical Modeling Made Easy for ALL
Lecture 220 Link to the Python codes for the projects and the data
Lecture 221 Introduction: Course Introduction
Lecture 222 Introduction: AI Sciences
Lecture 223 Introduction: Course Outline
Lecture 224 Summary Statistics: Module Intoduction
Lecture 225 Summary Statistics: Overview
Lecture 226 Summary Statistics: Summary Statistics
Lecture 227 Summary Statistics: Average Types
Lecture 228 Summary Statistics: Mean
Lecture 229 Summary Statistics: Median
Lecture 230 Summary Statistics: Median Example
Lecture 231 Summary Statistics: Mode
Lecture 232 Summary Statistics: Case Study For Average
Lecture 233 Summary Statistics: IQR
Lecture 234 Summary Statistics: Variance
Lecture 235 Summary Statistics: Standard Deviation
Lecture 236 Summary Statistics: Averages in Python
Lecture 237 Summary Statistics: Std Deviation and Variance in Python
Lecture 238 Summary Statistics: IQR in Python
Lecture 239 Hypothesis Testing: Module Introduction
Lecture 240 Hypothesis Testing: Hypothesis Testing Overview
Lecture 241 Hypothesis Testing: Terminologies in Hypothesis Testing
Lecture 242 Hypothesis Testing: Null Hypothesis
Lecture 243 Hypothesis Testing: Alternate Hypothesis
Lecture 244 Hypothesis Testing: Test Statistics
Lecture 245 Hypothesis Testing: P-Value
Lecture 246 Hypothesis Testing: Critical Value
Lecture 247 Hypothesis Testing: Level of Significance
Lecture 248 Hypothesis Testing: Case Study 1
Lecture 249 Hypothesis Testing: Case Study 2
Lecture 250 Hypothesis Testing: Calculations for Python
Lecture 251 Hypothesis Testing: Steps of Hypothesis Testing
Lecture 252 Hypothesis Testing: Code Outcomes
Lecture 253 Hypothesis Testing: Calculation of Z in Python
Lecture 254 Hypothesis Testing: Norm Function
Lecture 255 Hypothesis Testing: P Value Python
Lecture 256 Correlation and Regression: Module Introduction
Lecture 257 Correlation and Regression: Covariance and Correlation
Lecture 258 Correlation and Regression: Correlation
Lecture 259 Correlation and Regression: Regression
Lecture 260 Correlation and Regression: Correlation and Covariance in Python
Lecture 261 Correlation and Regression: Entering Input
Lecture 262 Correlation and Regression: Linear Regression Results
Lecture 263 Multiple Regression: Module Overview
Lecture 264 Multiple Regression: Motivation for Multiple Regression
Lecture 265 Multiple Regression: Formula for MR
Lecture 266 Multiple Regression: Preparing the Data
Lecture 267 Multiple Regression: Multiple Regression in Python
Beginners in Python and Data Science,Python Enthusiasts looking to apply skills in Data Analysis,Aspiring Data Scientists seeking a strong foundation,Professionals aiming to enhance their statistical modeling skills
1、登录后,打赏30元成为VIP会员,全站资源免费获取!
2、资源默认为百度网盘链接,请用浏览器打开输入提取码不要有多余空格,如无法获取 请联系微信 yunqiaonet 补发。
3、分卷压缩包资源 需全部下载后解压第一个压缩包即可,下载过程不要强制中断 建议用winrar解压或360解压缩软件解压!
4、云桥网络平台所发布资源仅供用户自学自用,用户需以学习为目的,按需下载,严禁批量采集搬运共享资源等行为,望知悉!!!
5、云桥网络-CG数字艺术学习与资源分享平台,感谢您的关注与支持!
评论(0)