支持向量机,松弛变量,支持向量回归,核技巧,释放支持向量机的力量什么是支持向量机?SVM是一种受监督的机器学习算法,通过在高维空间中创建超平面来对数据进行分类。它广泛用于回归和分类任务。SVM擅长处理复杂的数据集,使其成为各种应用的首选,包括图像分类、文本分析和异常检测。支持向量机的工作原理是其核心,SVM的目标是找到一个最佳超平面,最大限度地将数据点分成不同的类别。通过将输入数据转换到更高维的特征空间,SVM有助于有效分离,即使数据不是线性可分离的。该算法通过寻找支持向量来实现这一点,支持向量是最接近超平面的数据点。支持向量机的关键优势灵活性:SVM提供了多种多样的核函数,允许非线性决策边界,这使它比其他算法具有优势。鲁棒性:SVM能够有效地处理含有离群值和噪声的数据集,这要归功于它能够专注于支持向量,而不是考虑整个数据集。泛化:SVM展示了出色的泛化能力,能够对未知数据进行准确预测。内存效率:与其他一些机器学习算法不同,SVM只需要训练样本的子集来进行决策,这使得它具有内存效率。最大余量的重要性通过最大限度地增加余量,SVM提高了分类模型的通用性和鲁棒性。更大的裕量可以更好地区分类别,降低错误分类的风险,并提高模型处理不可见数据的能力。最大间隔分类的概念根植于寻找具有最高置信度的决策边界的思想。支持向量机支持向量机的用例在广泛的领域中有其应用,包括:图像识别:SVM基于复杂特征对图像进行分类的能力使其在计算机视觉任务中具有不可估量的价值,如面部识别和对象检测。文本分类:SVM可以对文本文档进行分类,这使得它非常适合情感分析、垃圾邮件检测和主题分类。Mastering Svm: A Comprehensive Guide With Code In Python
生物信息学:SVM在蛋白质结构预测、基因表达分析和疾病分类方面提供帮助,对生物信息学领域做出了重大贡献。金融:SVM协助信用评分、股票市场预测和欺诈检测,帮助金融机构做出明智的决策。SVM实施的最佳实践要在项目中最大限度地提高SVM的有效性,请考虑以下最佳实践:数据预处理:通过执行诸如要素缩放、处理缺失值和对分类变量进行编码等任务,确保数据得到正确的预处理。超参数调整:试验不同的核函数、正则化参数和其他超参数,以优化SVM模型的性能。特征选择:选择相关的特征,以提高SVM的效率,避免过度拟合。交叉验证:利用交叉验证技术来验证你的SVM模型,并评估其泛化能力。内核技巧SVM算法利用“内核技巧”技术将输入数据转换到更高维的特征空间。这种变换允许在原始输入空间中定义非线性决策边界。核函数在这一过程中起着至关重要的作用,因为它测量数据点对之间的相似性。常用的核函数包括线性核、多项式核和径向基函数(RBF)核。边距和支持向量在SVM,边距指的是决策边界(超平面)和每个类的最近数据点之间的区域。目标是找到使这个裕度最大化的超平面。位于边缘或距离边缘一定距离内的数据点称为支持向量。这些支持向量对于定义超平面和确定分类边界是至关重要的。C参数和正则化C参数通常称为正则化参数,是SVM中的一个重要参数。它控制着最大限度地提高利润和最小化分类误差之间的权衡。C值越高,就越重视数据点的正确分类,这可能会导致更窄的边界。另一方面,较低的C值允许更大的余量,但是可能导致更多的错误分类。C参数的适当调整对于实现模型简单性和准确性之间的理想平衡至关重要。非线性分类SVM的一个主要优点是它处理非线性分类问题的能力。内核技巧允许SVM将输入数据映射到一个更高维的空间,在那里线性分离是可能的。这使得SVM能够解决复杂的分类任务,这些任务不能被原始特征空间中的线性超平面精确分离。SVM训练和优化SVM模型的训练包括寻找最佳超平面,该超平面最大化边缘并分离类别。这个优化问题可以公式化为二次规划任务。各种优化算法,如序列最小优化(SMO),通常用于有效地解决这个问题。结论支持向量机是一种通用和健壮的算法,它使数据科学家能够处理复杂的分类和回归问题。
MP4 |视频:h264,1280×720 |音频:AAC,44.1 KHz
语言:英语|大小:1.29 GB 含课程文件 |时长:3小时39分钟
你会学到什么
最大利润
松弛变量
数据预处理
标准化功能
过度拟合
训练模型
内核技巧
支持向量机中的c参数
SVM的线性分类
非线性SVM实现
v-支持向量机
支持向量回归机
混淆矩阵
将数据集分成训练集和测试集
要求
需要Python知识和基本的机器学习
课程目录:
第一部分:导言
第1讲课程结构
第二讲重要视频请观看
第三讲SVM的一些重要术语
第四讲SVM介绍
第2部分:使用支持向量机的最大间隔分类
第5讲最大利润介绍
第6讲什么是时差变量
第7讲数据预处理
第8讲标准化功能
第9讲过度拟合介绍
第10讲训练模型
第11讲内核技巧介绍
第12讲内核技巧实现
第三部分:一些SVM算法
第13讲SVM线性分类介绍
第14讲什么是支持向量机中的C参数
第15讲线性分类在SVM的实施
第16讲非线性SVM实现
第17讲非线性SVM解释
第18讲MNIST手写数字数据集
第19讲V-支持向量机简介
第20讲V-支持向量机的实现
第21讲支持向量回归(SVR)简介
第22讲SVR的实现
第4部分:项目:皮马印第安人糖尿病
第23讲简介和实施第1部分
第24讲简介和实施第2部分
第25讲将数据集分成训练集和测试集的其他方法
第26讲混淆矩阵解释
第27讲混淆矩阵的实现
第5部分:生育诊断项目
第六部分:谢谢
第二十八讲谢谢
任何对机器学习感兴趣的人。、至少拥有高中数学知识并希望开始学习机器学习、深度学习和人工智能的学生,以及任何对编码不太熟悉但对机器学习、深度学习和人工智能感兴趣并希望将其轻松应用于数据集的人。,任何想在数据科学领域开始职业生涯的大学同学,任何想通过使用强大的机器学习、人工智能和深度学习工具为其业务创造附加值的人。任何想在车企做数据科学家、机器学习、深度学习、人工智能工程师的人。
V-Support vector machine, slack variables, Support Vector Regression (SVR), Kernel Trick
What you’ll learn
Maximum margin
slack variables
Data preprocessing
Standardizing features
Overfitting
Train the model
Kernel Trick
C parameter in support vector machine
Linear Classification in SVM
Non-linear SVM implementation
V-Support vector machine
Support Vector Regression (SVR)
Confusion matrix
Splitting the datasets into training and testing sets
Requirements
Python knowledge and basic machine learning is required
Description
Unleashing the Power of Support Vector MachineWhat is Support Vector Machine?SVM is a supervised machine learning algorithm that classifies data by creating a hyperplane in a high-dimensional space. It is widely used for both regression and classification tasks. SVM excels at handling complex datasets, making it a go-to choice for various applications, including image classification, text analysis, and anomaly detection.The Working Principle of SVMAt its core, SVM aims to find an optimal hyperplane that maximally separates data points into distinct classes. By transforming the input data into a higher-dimensional feature space, SVM facilitates effective separation, even when the data is not linearly separable. The algorithm achieves this by finding support vectors, which are the data points closest to the hyperplane.Key Advantages of Support Vector MachineFlexibility: SVM offers versatile kernel functions that allow nonlinear decision boundaries, giving it an edge over other algorithms.Robustness: SVM effectively handles datasets with outliers and noise, thanks to its ability to focus on the support vectors rather than considering the entire dataset.Generalization: SVM demonstrates excellent generalization capabilities, enabling accurate predictions on unseen data.Memory Efficiency: Unlike some other machine learning algorithms, SVM only requires a subset of training samples for decision-making, making it memory-efficient.The Importance of Maximum MarginBy maximizing the margin, SVM promotes better generalization and robustness of the classification model. A larger margin allows for better separation between classes, reducing the risk of misclassification and improving the model’s ability to handle unseen data. The concept of maximum margin classification is rooted in the idea of finding the decision boundary with the highest confidence.Use Cases of SVMSVM finds its applications in a wide range of domains, including:Image Recognition: SVM’s ability to classify images based on complex features makes it invaluable in computer vision tasks, such as facial recognition and object detection.Text Classification: SVM can classify text documents, making it ideal for sentiment analysis, spam detection, and topic categorization.Bioinformatics: SVM aids in protein structure prediction, gene expression analysis, and disease classification, contributing significantly to the field of bioinformatics.Finance: SVM assists in credit scoring, stock market forecasting, and fraud detection, helping financial institutions make informed decisions.Best Practices for SVM ImplementationTo maximize the effectiveness of SVM in your projects, consider the following best practices:Data Preprocessing: Ensure your data is properly preprocessed by performing tasks such as feature scaling, handling missing values, and encoding categorical variables.Hyperparameter Tuning: Experiment with different kernel functions, regularization parameters, and other hyperparameters to optimize the performance of your SVM model.Feature Selection: Select relevant features to improve SVM’s efficiency and avoid overfitting.Cross-Validation: Utilize cross-validation techniques to validate your SVM model and assess its generalization capabilities.Kernel TrickThe SVM algorithm utilizes the “kernel trick” technique to transform the input data into a higher-dimensional feature space. This transformation allows nonlinear decision boundaries to be defined in the original input space. The kernel function plays a vital role in this process, as it measures the similarity between pairs of data points. Commonly used kernel functions include the linear kernel, polynomial kernel, and radial basis function (RBF) kernel.Margin and Support VectorsIn SVM, the margin refers to the region between the decision boundary (hyperplane) and the nearest data points from each class. The goal is to find the hyperplane that maximizes this margin. The data points that lie on the margin or within a certain distance from it are known as support vectors. These support vectors are critical in defining the hyperplane and determining the classification boundaries.C-Parameter and RegularizationThe C-parameter, often called the regularization parameter, is a crucial parameter in SVM. It controls the trade-off between maximizing the margin and minimizing the classification errors. A higher value of C places more emphasis on classifying data points correctly, potentially leading to a narrower margin. On the other hand, a lower value of C allows for a wider margin but may result in more misclassifications. Proper tuning of the C-parameter is essential to achieve the desired balance between model simplicity and accuracy.Nonlinear Classification with SVMOne of the major strengths of SVM is its ability to handle nonlinear classification problems. The kernel trick allows SVM to map the input data into a higher-dimensional space where linear separation is possible. This enables SVM to solve complex classification tasks that cannot be accurately separated by a linear hyperplane in the original feature space.SVM Training and OptimizationThe training of an SVM model involves finding the optimal hyperplane that maximizes the margin and separates the classes. This optimization problem can be formulated as a quadratic programming task. Various optimization algorithms, such as Sequential Minimal Optimization (SMO), are commonly used to solve this problem efficiently.ConclusionSupport Vector Machine is a versatile and robust algorithm that empowers data scientists to tackle complex classification and regression problems. By harness
Overview
Section 1: Introduction
Lecture 1 Course structure
Lecture 2 IMPORTANT VIDEOS PLEASE WATCH
Lecture 3 Some of important terminologies in SVM
Lecture 4 Introduction to SVM
Section 2: Maximum margin classification with support vector machines
Lecture 5 Introduction to Maximum margin
Lecture 6 What is slack variables
Lecture 7 Data preprocessing
Lecture 8 Standardizing features
Lecture 9 Introduction to Overfitting
Lecture 10 Train the model
Lecture 11 Introduction to Kernel Trick
Lecture 12 Kernel trick implementation
Section 3: Some of the SVM algorithm
Lecture 13 Introduction to Linear Classification in SVM
Lecture 14 What is C parameter in support vector machine
Lecture 15 Implementation of Linear Classification in SVM
Lecture 16 Non-linear SVM implementation
Lecture 17 Non-linear SVM explaination
Lecture 18 MNIST handwritten digit dataset
Lecture 19 Introduction to V-Support vector machine
Lecture 20 Implementation of V-support Vector Machine
Lecture 21 Introduction to Support Vector Regression (SVR)
Lecture 22 Implementation of SVR
Section 4: Project: Pima Indians Diabetes
Lecture 23 Introduction and implementation Part 1
Lecture 24 Introduction and implementation Part 2
Lecture 25 Other method of splitting the datasets into training and testing sets
Lecture 26 Confusion matrix Explanation
Lecture 27 Confusion matrix Implementation
Section 5: Fertility diagnostic project
Section 6: Thank you
Lecture 28 Thank you
Anyone interested in Machine Learning.,Students who have at least high school knowledge in math and who want to start learning Machine Learning, Deep Learning, and Artificial Intelligence,Any people who are not that comfortable with coding but who are interested in Machine Learning, Deep Learning, Artificial Intelligence and want to apply it easily on datasets.,Any students in college who want to start a career in Data Science,Any people who want to create added value to their business by using powerful Machine Learning, Artificial Intelligence and Deep Learning tools. Any people who want to work in a Car company as a Data Scientist, Machine Learning, Deep Learning and Artificial Intelligence engineer.
1、登录后,打赏30元成为VIP会员,全站资源免费获取!
2、资源默认为百度网盘链接,请用浏览器打开输入提取码不要有多余空格,如无法获取 请联系微信 yunqiaonet 补发。
3、分卷压缩包资源 需全部下载后解压第一个压缩包即可,下载过程不要强制中断 建议用winrar解压或360解压缩软件解压!
4、云桥网络平台所发布资源仅供用户自学自用,用户需以学习为目的,按需下载,严禁批量采集搬运共享资源等行为,望知悉!!!
5、云桥网络-CG数字艺术学习与资源分享平台,感谢您的关注与支持!
评论(0)